An Independent Investigation of the Crystal Structure of 1,8-Dinitronaphthalene (Orthorhombic Form) at 22 and $97^{\circ} \mathrm{C}$

M. CIECHANOWICZ-RUTKOWSKA
Regional Laboratory of Physicochemical Analysis and Structural Research, Jagellonian University, ul. Krupnicza 41, 30-060 Kraków, Poland

Received August 12, 1976; in revised form, April 23, 1977

Abstract

The crystal and molecular structure of the orthorhombic form of 1,8 -dinitronaphthalene, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$, has been reinvestigated at $22^{\circ} \mathrm{C}$ and examined at $97^{\circ} \mathrm{C}$ using single-crystal diffractometer data in order to throw some light on the structural aspects of the polymorphism of the title compound. The space group of the crystal is $P 2_{1} 2_{1} 2_{1}$ with $a=11.375$ (1), $b=14.974$ (5), $c=5.388$ (1) \AA at $22^{\circ} \mathrm{C}$ and $a=11.475$ (1), $b=$ 15.002 (1), $c=5.425(6) \AA$ at $97^{\circ} \mathrm{C} . Z=4$ at both temperatures. The data, collected with CuK_{a} radiation, were refined by full-matrix least squares to $R=0.049$ for 1087 reflexions $\left(22^{\circ} \mathrm{C}\right)$ and $R=0.061$ for 1078 reflexions $\left(97^{\circ} \mathrm{C}\right)$. The structure was found to be in agreement with that determined by Z. A. Akopian, A. I. Kitaigorodskii, T. J. Struchkov (Zh. Strukt. Khim. 6, 729 (1965)). Changes occurring on heating to a temperature of $97^{\circ} \mathrm{C}$, which is close to the transition temperature (of $c \rightarrow p c$ type) $100-105^{\circ} \mathrm{C}$, suggest that the possible mechanism of the phase transition is that of the displacive transformation of secondary coordination. Anisotropic temperature factors of the majority of atoms increased by ca. 50% with no particular direction of atom vibrations being distinguished.

Introduction

The polymorphism of 1,8-dinitronaphthalene, henceforth called $1,8-\mathrm{DNN}$, has been studied by the DTA method (1), by means of the optical and X-ray techniques $(2,3)$ and the dilatometric method (4). The results of these studies, summarized after Jakubowski and Rohleder (4) below, lead to the conclusion that the title compound exists in four polymorphic modifications.

The structure of phase 1 of 1,8 -DNN has been determined from photographic data with an isotropic approximation by Akopian et al. (5). The structure of phase II of $1,8-\mathrm{DNN}$ cannot be found by the single-crystal X-ray technique since transformation: phase $I \rightarrow$ phase II is of the type: single crystal \rightarrow polycrystalline material. The monoclinic modification of 1,8 -DNN found by Kozhin (3) on supercooled crystals of the high-temperature
form and regarded by him as phase II, may, according to Jakubowski et al. (4), correspond to phase III or IV,

The present investigation was undertaken in order to determine the structure of 1,8 -DNN (phase I) more accurately at room temperature, and in particular to find out how it changes near the transition temperature of phase I to phase II.

Phase IV $\longleftrightarrow \longrightarrow$ Phase III

Collection and Treatment of Data

The crystals of the carefully purified material were grown from the solvent (90% toluene, 10% acetone) and kindly supplied by

Professor J. Rohleder. The crystals are transparent flat rhombic plates.

The accurate unit-cell parameters and the intensity data were measured on an automatic four-circle diffractometer of type CAD-4

TABLE I
Summary of Crystal Data, Detalls of Data Collection and Structure Refinement of the Two Measurements, at 22 and $97^{\circ} \mathrm{C}^{a}$

	$22^{\circ} \mathrm{C}$		$97^{\circ} \mathrm{C}$	
Crystal data				
Crystal system		Orthorhombic		
Space group		$P 2,2,2$,		
$a(\AA)$	11.375 (1)		11.475 (I)	
b (${ }^{\text {d }}$)	14.974 (5)		15.002 (1)	
$c(\AA)$	5.388 (1)		5.425 (6)	
$V\left(\AA^{3}\right)$	917.734		933.903	
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.584		1.557	
$D_{m}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.57			
$\mu\left(\mathrm{cm}^{-1}\right)$		10.905		
Crystal size (mm)	$0.30 \times 0.28 \times 0.19$		$0.25 \times 0.25 \times 0.18$	
Data collection				
Radiation		CuK_{α}		
Monochromator		Graphite		
Instrument		Four circle diffractometer		
Scan mode		$\omega-2 \theta$		
Scan interval $\Delta \omega$ $\theta_{\text {ma }}{ }^{(0)}$	$0.6+0.4 \tan \theta$	72	$0.8+0.4 \tan \theta$	
Number of measured independent reflexions	1097		1124	
Rejection criterion		$I_{\text {net }}<0$		
Number of reflexions used in refinement of structure	1090		1078	
Treatment of data and refinement of structure				
Lorentz and polarization corrections		Applied		
Absorption correction	For general crystal shape		Not applied	
Treatment of extinction effect	Reflexions 200, 400, 040 removed			
Refinement method		Full-matrix least squares		
Weighting scheme		Applied		
Scattering factors		International Tables for X-ray Crystallography (1974)		
Anomalous dispersion correction		Not applied		
Thermal parameters		All atoms except hydrogen anisotropic		
Hydrogen atoms		Calculated positions		
Maximum electron density ($e\left(\AA^{3}\right)$) on a final difference Fourier	0.28		0.22	
$R=\Sigma\| \| F_{0}\left\|-\left\|F_{c}\right\|\right\| / \Sigma\left\|F_{0}\right\|$	0.049		0.061	
$R_{w}=\Sigma\left(\\| F_{0}\left\|-\left\|F_{c}\right\|\right\| w^{1 / 2}\right) / \Sigma\left\|F_{0}\right\| w^{1 / 2}$	0.055		0.057	

[^0]Fractional Coordinates and Anisutropic Thermal Parameters ($\times 10^{4}$) at $22^{\circ} \mathrm{C}$ (the Top Entry) and at $97^{\circ} \mathrm{C}$ (the Bottom Entry) with Their Standard Deviations ${ }^{a}$

	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O(1)	6558(2)	7493(1)	-1891(4)	442(10)	391 (10)	506(12)	63 (9)	22(10)	-76(8)
	6553(3)	7488(2)	-1897 (5)	642(17)	$588(15)$	$691(18)$	80 (15)	$37(16)$	-114(12)
$\mathrm{O}(2)$	6580(2)	7917(1)	1946(5)	541 (11)	364(10)	659(15)	-154(11)	-95(12)	-34(9)
	6574(3)	7913(2)	1911(6)	$783(18)$	522(13)	$885(21)$	-195(15)	-167(18)	-78(13)
O (3)	4089(3)	7557(2)	-4793(5)	$588(14)$	484(11)	542(13)	157(10)	-102(11)	-5(10)
	4092(3)	7553(2)	-4757(6)	839(22)	639(16)	747(19)	204(15)	- 104(18)	25(15)
$\mathrm{O}(4)$	4170(2)	7765(1)	-833(5)	455(11)	334(9)	601 (14)	-123(10)	-62(11)	$79(9)$
	4173(3)	7763(2)	-826(6)	$652(16)$	468 (14)	813 (20)	-154(14)	-55(16)	$90(12)$
$\mathrm{N}(1)$	6386 (2)	7369(1)	329(5)	272(10)	276 (10)	$512(13)$	-52(10)	-37(10)	-18(8)
	6386(2)	7361(2)	309(7)	$395(14)$	460(15)	661(19)	-55(15)	-61(15)	-15(12)
N (2)	4224(2)	7291 (1)	-2673(5)	$286(10)$	322(11)	496 (14)	24(10)	-46(10)	$13(8)$
	4223(3)	7287(2)	-2662(6)	430 (14)	445 (14)	$668(19)$	12(15)	-46(15)	$26(12)$
C (1)	5984(2)	6472(1)	1060(5)	287(10)	266(10)	378(13)	-45(10)	24(10)	$15(9)$
	5989(2)	6474(2)	1048(6)	425(15)	404(14)	511(18)	-58(15)	12(15)	28(12)
$\mathrm{C}(2)$	6570(2)	$6102(2)$	3029(5)	358(12)	417 (12)	370 (13)	-24(11)	-13(11)	$31(11)$
	$6574(3)$	6103(2)	2987(7)	$500(17)$	$602(19)$	$512(20)$	-39(17)	-7(17)	63(15)
C(3)	6390(2)	$5194(2)$	3599 (6)	447(13)	434(13)	$425(15)$	70 (13)	$-10(13)$	105(12)
	6395(3)	5196(3)	3570(7)	636 (20)	640(20)	602(22)	123(21)	-7(21)	109(19)
C(4)	5669(2)	4688(2)	2178 (6)	426(12)	332 (11)	478(15)	$86(12)$	68(13)	44(10)
	5656(3)	4693(2)	2150 (7)	624(19)	$501(18)$	$633(23)$	$111(19)$	$72(21)$	73 (16)
C(5)	4272(2)	4518(2)	-1274(6)	354(11)	260(10)	562(17)	-40(11)	96(13)	-50(9)
	4274(3)	4523(2)	-1254(8)	496(17)	453 (16)	$728(25)$	-81(17)	88(21)	-56(15)
C(6)	3645(2)	4868(2)	-3206(6)	371(12)	360 (12)	$520(16)$	-121(13)	7 (13)	-62(10)
	3656(3)	4871(2)	-3176(8)	516(18)	516 (18)	$781(27)$	-176(20)	$1(21)$	-85(15)
C(7)	3698(2)	5789(2)	-3681(6)	333(11)	356(11)	433(14)	-43(11)	-5(12)	-4(10)
	3699(3)	5797(2)	$-3667(8)$	465(16)	$536(18)$	$591(22)$	-70(17)	-1(18)	-22(15)
C (8)	4397(2)	$6327(1)$	-2288(5)	279(10)	$287(10)$	375(13)	$-36(10)$	$39(10)$	$8(9)$
	4386 (2)	$6331(2)$	-2248(6)	371(13)	408(15)	534(18)	-18(15)	37(15)	27(12)
$\mathrm{C}(9)$	5144(2)	6000(1)	-367(5)	$297(10)$	$221(9)$	346(12)	-24(9)	70(10)	20(8)
	5138(3)	5999(2)	-373(6)	430(15)	402 (14)	437(16)	-27(14)	53(15)	-1(12)
C (10)	5034(2)	5070 (1)	165(5)	354(11)	239 (10)	418(15)	-8(1)	67(12)	$7(9)$
	5022(2)	5070(2)	175(7)	471(16)	384(15)	$578(21)$	-32(16)	$109(17)$	22(13)
H(1)	7163	6502	4132						
	7170	6501	4067						
H(2)	6829	4900	5177						
	6837	4900	5125						
H(3)	5574	3985	2578						
	5556	3992	2551						
H(4)	4190	3817	-830						
	4193	3824	-817						
H(5)	3112	4439	-4360						
	3134	4439	-4324						
H(6)	3179	6072	-5165						
	3192	6078	-5152						

(manufactured by Enraf-Nonius, Delft, Holland) equipped with an apparatus enabling one to heat the crystal with a continuous stream of hot nitrogen gas. The temperature of the crystal during the experiment was $97 \pm 2^{\circ} \mathrm{C}$. The data were collected on two different crystals at two temperatures. For measurement at $97^{\circ} \mathrm{C}$ the crystal had to be sealed in a capillary tube.

Some of the details of the two different crystals, the method used to collect the data and refine the structure are given in Table I.

During the data collection the scan spced was calculated from the net intensity in a fast prescan. The scan was continuous and the background intensity was measured for $\frac{1}{4}$ of the scan time at both ends of the scan interval. Two control reflexions were measured after each block of 25 reflexions to check for crystal decomposition and radiation stability. Maximum intensity variation over the data collection period of 50 and 60 hr were 3.5 and 4.6% for measurements at 22 and $97^{\circ} \mathrm{C}$, respectively. All intensities and their variances were scaled according to these control reflexions.

The refinement was undertaken with the atom coordinates found by Akopian et al. (5). It was carried out using programs written by Sheldrick (6) and went smoothly for the data collected at both temperatures. The function minimized was $\Sigma w\left|F_{0}-k F_{c}\right|^{2}$ with weights w $=\left(w^{\prime}\left(2 F_{\text {min }}+F_{0}+2 F_{0}^{2} / F_{\text {max }}\right)\right)^{-1}$, where w^{\prime} is statistical weights. The intensities collected at $22^{\circ} \mathrm{C}$ were corrected for an absorption effect with the program DATAPC which is a modification by Svensson (7) of a program originally written by Coppens $\epsilon:$ al. (8). Since this correction had a minor effect on the
quality of the data it was felt that the labor involved in applying the correction to the intensities collected at $97^{\circ} \mathrm{C}$ was not justified. The positions of hydrogen atoms were calculated assuming a $\mathrm{C}-\mathrm{H}$ bond distance of 1.08 \AA and most of them were in good agreement with those revealed on a difference Fourier map. Theoretical positions of hydrogen atoms with an assigned isotropic temperature factor U of $0.05 \AA^{2}$ were included in the calculations of the structure factors but not refined because of the limited number of independent reflexions. The positions of the hydrogens were recalculated after the other atoms had shifted in response to their inclusion. Refinement was continued with the atoms vibrating anisotropically until the final average ratio of shift to standard deviation was 0.05 and 0.01 , and the maximum ratio was 0.1 and 0.04 at 22 and $97^{\circ} \mathrm{C}$, respectively.

Table II lists the final coordinates and coefficients of the anisotropic temperature factors with their standard deviations. Tables III and IV ${ }^{1}$ list the observed structure amplitudes and the calculated structure factors for the experiments at 22 and $97^{\circ} \mathrm{C}$, respectively.

[^1]TABLE V

	Akopianet al. (5)Room temperature					nt			
		\leftarrow	Δ	\rightarrow	$22^{\circ} \mathrm{C}$	\leftarrow	Δ	\rightarrow	$97^{\circ} \mathrm{C}$
$a(\AA)$	11.352 (2)		0.020 (2)		11.375 (1)		0.100 (2)		11.475 (1)
b (A$)$	14.934 (2)		0.040 (5)		14.974 (5)		0.028 (5)		15.002 (I)
$c(A)$	5.376 (1)		0.012 (1)		5.388 (1)		0.037 (6)		5.425 (6)

Fig. 1. Bond lengths (\AA) and bond angles $\left(^{\circ}\right.$) as determined by Akopian et al. (5) (the top line), determined in the present study at $22^{\circ} \mathrm{C}$ (the middle line) and at $97^{\circ} \mathrm{C}$ (the bottom line). The estimated standard deviations for the latter two are $0.003-0.005 \AA$ in distances and $0.2-0.4^{\circ}$ in angles.

Discussion

The crystal and molecular structure of 1,8 dinitronaphthalene, determined from 915
reflexions collected photographically at room temperature, was described and discussed in detail by Akopian et al. (5). The results of the present investigation confirm it, although the

TABLE VI
Some Selected Nonbonded Distances (A) and Angles (${ }^{\circ}$)

	$22^{\circ} \mathrm{C}$	$97^{\circ} \mathrm{C}$	Δ		$22^{\circ} \mathrm{C}$	$97^{\circ} \mathrm{C}$	Δ
C3-C6	3.599	3.638	0.039	C1-C4	2.762	2.765	0.003
C2-C7	3.747	3.793	0.046	C8-C5	2.767	2.768	0.001
$\mathrm{Ol}{ }^{\text {b }}$-O3	3.390	3.433	0.043	$\mathrm{O} 4^{\text {b }}$ - N 1	3.185	3.215	0.030
$\mathrm{Ol} 1^{\text {b }}$-O4	3.336	3.371	0.035	$\mathrm{O4}{ }^{\text {b }}$ - C 1	3.801	3.830	0.029
$\mathrm{O} 1^{\text {b }}$ - N 2	3.918	3.952	0.034	O4 ${ }^{\text {c }}$ - 3	3.883	3.905	0.023
O1 ${ }^{\text {c- }-\mathrm{C} 5}$	3.326	3.351	0.025	$\mathrm{O4} 4^{\mathrm{c}}-\mathrm{C} 4$	3.493	3.522	0.029
O1--C6	3.565	3.583	0.021	O4 ${ }^{\text {c-C5 }}$	3.529	3.558	0.029
$\mathrm{O} 2{ }^{\text {b }}-\mathrm{O} 3$	3.317	3.349	0.032	$\mathrm{N} 1^{\text {b }}-\mathrm{O} 3$	3.906	3.934	0.028
$\mathrm{O} 2^{\text {b }}$-04	3.175	3.204	0.029	$\mathrm{N} 1^{\text {b }}$-O4	3.185	3.215	0.030
$\mathrm{O} 2^{\text {b }}-\mathrm{N} 2$	3.049	3.082	0.033	$\mathrm{N} 1^{\text {b }}$ - N 2	3.504	3.536	0.032
$\mathrm{O2}^{\text {b }}$ - C 7	3.229	3.256	0.027	$\mathrm{N} 1^{c}-\mathrm{C} 4$	3.960	3.992	0.032
$\mathrm{O}^{2}-\mathrm{C} 8$	3.404	3.425	0.021	$\mathrm{N} 1^{c}-\mathrm{C} 6$	3.913	3.940	0.027
$\mathrm{O}^{2}-\mathrm{C} 4$	3.715	3.734	0.019	$\mathrm{N} 2^{\text {b }}-\mathrm{O} 2$	3.049	3.082	0.033
$\mathrm{O} 2{ }^{\text {c }}$ - C 5	3.482	3.512	0.030	$\mathrm{N} 2^{\text {b }}-\mathrm{O} 1$	3.918	3.952	0.034
$\mathrm{O} 2{ }^{\text {c }}$ - C 6	3.559	3.578	0.019	$\mathrm{N} 2^{\text {b }}-\mathrm{N} 1$	3.504	3.536	0.032
$\mathrm{O} 3{ }^{\text {b }}$-O1	3.390	3.433	0.043	$\mathrm{N} 2^{\text {b }}$ - C 2	3.866	3.887	0.021
O^{b} - O 2	3.317	3.349	0.032	$\mathrm{N} 2{ }^{\text {c }}$ - C 5	3.790	3.818	0.028
$\mathrm{O3}^{\text {b }}$ - N 1	3.906	3.934	0.028	$\mathrm{C} 2^{\text {a }}$ - 3	3.853	3.869	0.016
$\mathrm{O3}^{\text {b }}$ - N 2	3.626	3.651	0.025	$\mathrm{C2}^{\text {b }}-\mathrm{O} 3$	3.626	3.651	0.025
$\mathrm{O} 3^{\mathrm{c}-\mathrm{C} 4}$	3.452	3.475	0.023	$\mathrm{C} 2^{\text {b }}-\mathrm{O} 4$	3.608	3.629	0.021
O3 $3^{-} \mathrm{C} 5$	3.525	3.543	0.018	C3 ${ }^{\text {a }}$ - C 4	3.865	3.905	0.040
$\mathrm{O3}^{\text {c- }-\mathrm{C} 10}$	3.898	3.918	0.020	C5 ${ }^{\text {a }}$ - 6	3.819	3.863	0.044
$\mathrm{O} 4^{\text {b }}-\mathrm{O} 1$	3.336	3.371	0.035	C5 ${ }^{\text {a }}$ - 7	3.684	3.721	0.037
$\mathrm{O} 4^{\text {b }}$-O2	3.175	3.204	0.029	$\mathrm{Cb}^{\text {a }}$ - C 7	3.744	3.781	0.037

Note: Superscripts refer to atoms in the following positions: $a, 1.5-x, 1-y, z-0.5 ; b, x-0.5,1.5-y, 1-z$; $c, 1-x, y-0.5,1.5-z$. Atoms without superscripts are in positions x, y, z as given in Table II.
comparison of the unit-cell parameters (Table V) shows that the differences are greater than three times their e.s.d.

If the same criterion of the significance of the difference is applied to the molecuiar bond lengths and angles given in Fig. 1, it can be seen that the four bond lengths (C6-C7, C8$\mathrm{C} 9, \mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 6-\mathrm{C} 5$), and the six bond angles involving nitro groups differ from each other. These differences may be accounted for by the different techniques of data collection in both studies and by the differences in the structure refinement, mainly the application of an isotropic (Akopian et al. (5)) and an anisotropic
(present work) approximation. They do not change, however, the fact that both refinements lead to basically the same structure.

For the study of the polymorphic changes of 1,8 -dinitronaphthalene it is interesting to compare the structures determined at 22 and $97^{\circ} \mathrm{C}$. The most obvious difference is apparent in the values of the anisotropic temperature factors, which for the majority of atoms increased by ca 50% (Table II), with no particular direction of atomic vibrations being distinguished.

Figure 1 shows the bond lengths and bond angles found for the molecule at both tem-

TABLE VII
Deviations of the Atoms from the Least-Squares Planes (\AA) and Angles (${ }^{\circ}$) between These Planes ${ }^{\alpha}$

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^2]peratures. With the exception of the C1-C9 bond, the differences are smaller than three times the e.s.d. However, the change in the nonbonded distances C2-C7 and C3-C6 (Table VI), which lie approximately in the (010) plane, is significant, whereas the perpendicular distances $\mathrm{Cl}-\mathrm{C} 4$ and C8-C5 (Table VI) remain practically unchanged. That could be explained as being the result of the thermal agitation of atoms, due to which the midpoints of the atom vibrations shift from their original positions. This leads to small changes in the planarity of naphthalene (Table VII), and thus in the distances close in direction to (010) plane, leaving at the same time the aromatic plane practically rigid in [010] direction.

It was suspected that on heating the angles of twist of the nitro groups out of the naphthalene plane might change, or that some disorder might appear, preceding the phase transition. However, neither the difference Fourier map nor the analysis of angles between least-squares planes (Table VII) shows these changes present. This is understandable since packing of the molecules,

Fig. 2. Projection of the structure along [001], after Akodian et al. (5).
shown in Fig. 2, did not change with temperature sufficiently to weaken the van der Waals interactions of nitro groups with neighboring carbon and hydrogen atoms. The details of the molecular packing were discussed by Akopian et al. (5). In the present work only the differences occurring on heating are given.

And thus, the inspection of the intermolecular distances (Table III), shows that a number of them change with an increase in temperature of more than $0.02 \AA$, which is three times the e.s.d., and that the closer their direction is to the (010) plane the stronger they are affected by the change in temperature.

The obtained results enable the interpretation of the anisotropic thermal expansion, found in the dilatometric study (4), in terms of the changes occurring on a molecular level. As a consequence the unit-cell parameters change as given in Table V: period a is most affected by the change in temperature and period b least affected.

On the basis of these observations one may be tempted to suggest that the mechanism of the polymorphic change, in terms of Burger's structural classification of polymorphic transformations (9), can be described as the displacive transformation of secondary coordination. To support this conclusion it should be noticed that the specific volume changes from $0.631 \mathrm{~cm}^{3} / \mathrm{g}$ at $22^{\circ} \mathrm{C}$ to 0.642 $\mathrm{cm}^{3} / \mathrm{g}$ at $97^{\circ} \mathrm{C}$, leading to the more open hightemperature form. The high-temperature monoclinic form reported by Kozhin (3) would have specific volume $0.656 \mathrm{~cm}^{3} / \mathrm{g}$.

Acknowledgment

The author is indebted to Professor Dr. J. Rohleder for suggesting this work and for supplying crystal material, and to Professor Dr. J. Chojnacki for helpful consultations. Thanks are also due to Dr. G. M. Sheldrick of Cambridge University, England, for making his programs available and Dr . C. Svensson of Lund University, Sweden, for correcting the intensity data for absorption effect. The diffractometer was supplied by the Regional Laboratory of Physicochemical Analysis and Structural Research at the Jagellonian University, and the study sponsored by the Material Engineering Project of Wrocław Technical University.

References

1. V. M. Kozhin, Zh. Strukt. Khim. 2, 46 (1961).
2. W. C. McCrone, Anal. Chem. 23, 1188 (1951).
3. V. M. Kozhin, Zh. Strukt. Khim. 5, 324 (1964).
4. B. Jakubowski and J. W. Rohleder, Acta Physica Pol. A 44, 593 (1973).
5. Z. A. Akopian, A. I. Kitaigorodski, and T. J. Struchkov, Zh. Strukt. Khim. 6, 729 (1965).
6. G. M. Sheldrick, "Programs for Crystal Structure Determination," unpublished (1974).
7. C. Svensson, Program DATAPC, unpublished.
8. P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Crystallogr. 18, 1035 (1965).
9. M. J. Buerger, Crystallographic aspects of phase transformations. in "Phase Transformations in Solids" (R. Smoluchowski, J. E. Mayer, and W. A. Weyl, Eds.), pp. 183-211, Wiley, New York (1951).

[^0]: ${ }^{a}$ Where the information is identical for both, it is located in the middie column.

[^1]: ${ }^{1}$ See NAPS document no. 03033 for 11 pages of supplementary material.' Order from ASIS/NAPS c/o Microfiche Publications, P. O. Box 3513, Grand Central Station, New York, New York 10017. Remit in advance for each NAPS Accession number. Institutions and organizations may use purchase orders when ordering, however, there is a billing charge for this service. Make checks payable to Microfiche Publications. Photocopies are $\$ 5.00$. Microfiches are $\$ 3.00$. Outside of the U.S. and Canada, postage is $\$ 3.00$ for a photocopy or $\$ 1.50$ for a fiche.

[^2]: ${ }^{a}$ Coordinates X, Y, Z refer to crystal axes a, b, c.
 ${ }^{b}$ Superscript x refers to atoms for which least-squares plane was calculated.

